Preliminary cyclostratigraphic results on planktonic foraminifera from IODP-Hole U1406A

 

Alessio Fabbrini 1Luca Foresi 2, Fabrizio Lirer 3 & Nicola Pelosi 3  

¹ Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom; a.fabbrini@ucl.ac.uk;  https://orcid.org/0000-0002-4190-6429

² Department of Physical Sciences, Earth and Environment, Via Laterina 8, Siena (SI) 53100, Italy;  luca.foresi@unisi.it;  https://orcid.org/0000-0002-3122-5363

³ Marine Science Institute (ISMAR) -CNR, Calata Porta di Massa, Napoli, 80133, Italy. fabrizio.lirer@iamc.cnr.it; https://orcid.org/0000-0003-4938-3252


 

How to cite: Fabbrini et al. (2020). Preliminary cyclostratigraphic results on planktonic foraminifera from IODP-Hole U1406A. Fossilia, Volume 2020: 15-17. https://doi.org/10.32774/FosRepPal.2020.0605


Bullet-Points Abstract
  • Cyclostratigraphic study conducted on early Miocene planktonic foraminifera quantitative data.
  • Preliminary age model based on Paragloborotalia siakensis tied to Earth eccentricity cycles.
  • Trilobatus and Paragloborotalia siakensis antiphasic relationship due to different paleocological affinities?

Keywords: planktonic foraminifera; cyclostratigraphy; early Miocene; North Atlantic.


 
 

Fig. 1. Power spectrum of the Paragloborotalia siakensis curve (red) compared with Laskar 2004 eccentricity (blue) using the final age model (Age M8). Around frequency 0.1 (corresponding to 110 Ky eccentricity cycle), a reliable match with the 2 components of the eccentricity signal (F=0.08 and F=0.104) is evident in P. siakensis distribution data.


Fig. 2. 400 Ky cycle comparison between P. siakensis, G. bulloides and eccentricity curve (Laskar at al., 2004). Time is represented on the x axis. The figure shows in pale blue the eccentricity curve not filtered and a filtered version dashed pale blue line for direct comparison with the filtered curve of G. bulloides (brown) and P. siakensis (blue line). The antiphasic relationship between G. bulloides and P. siakensis emerges clearly. The narrow pass-band filter was applied at F= 0.024-0.026.

 

Cited References

  • Beddow H.M., Liebrand D., Wilson D.S., Hilgen F.J., Sluijs A., Wade B.S. & Lourens L.J. (2018). Astronomical tunings of the Oligocene-Miocene transition from Pacific Ocean Site U1334 and implications for the carbon cycle. Climate of the Past, 14 (3): 255-270.
  • Fabbrini A., Baldassini N., Caricchi C., Di Stefano A., Dinarès Turell J., Foresi L., Lirer F., Patricolo S., Sagnotti L. & Winkler A. (2019). Integrated quantitative calcareous plankton bio-magnetostratigraphy of the Early Miocene from IODP Leg 342, Hole U1406A (Newfoundland Ridge, NW Atlantic Ocean). Stratigraphy and Geological Correlation, 27 (2): 259-276. doi. 10.1134/S0869593819020023.
  • Hilgen F.J., Iaccarino S., Krijgsman W., Villa G., Langereis C.G. & Zachariasse W.J. (2005). The global boundary stratotype section and point (GSSP) of the Messinian Stage (uppermost Miocene). Episodes, 23 (3): 172-8. 
  • Hinnov L.A. & Ogg J.G. (2007). Cyclostratigraphy and the astronomical time scale. Stratigraphy, 4 (2-3), 239-251.
  • Hinnov L.A. & Hilgen F.J. (2012). Cyclostratigraphy and astrochronology. In: The geologic time scale 2012 (pp. 63-83).
  • Huang N. E., & Wu Z. (2008). A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Reviews of geophysics, 46 (2).
  • Laskar J., Robutel P., Joutel F., Gastineau M., Correia A. C. M. & Levrard B. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428 (1): 261-285.
  • Laskar J. & Boué G. (2010), Explicit expansion of the three-body disturbing function for arbitrary eccentricities and inclinations. Astronomy & Astrophysics. Nov, 522: A60.
  • Lirer F., Caruso A., Foresi L.M., Sprovieri M., Bonomo S., Di Stefano A., Di Stefano E., Iaccarino S.M., Salvatorini G., Sprovieri R. & Mazzola S. (2002). Astrochronological calibration of the upper Serravallian/lower Tortonian sedimentary sequence at Tremiti Islands (Adriatic Sea, southern Italy). Rivista Italiana di Paleontologia e Stratigrafia 108 (2): 241-256.
  • Lourens L.J., Antonarakou A., Hilgen F.J., Van Hoof A.A., Vergnaud-Grazzini C. & Zachariasse W.J. (1996). Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography and Paleoclimatology, 11 (4): 391-413. 
  • Shackleton N.J., Crowhurst S., Hagelberg T., Pisias N.G. & Schneider D.A. (1995). A new late Neogene time scale: application to Leg 138 sites. In Proc. ODP, Sci. Results 1995, Vol. 138: 73-101. 
  • Shackleton N.J., Hall M.A., Raffi I., Tauxe L. & Zachos J. (2000). Astronomical calibration age for the Oligocene-Miocene boundary. Geology 28 (5): 447-50. 
  • van Peer T.E., Xuan C., Lippert P.C., Liebrand D., Agnini C. & Wilson P.A. (2017). Extracting a detailed magnetostratigraphy from weakly magnetized, Oligocene to early Miocene sediment drifts recovered at IODP Site U1406 (Newfoundland Margin, Northwest Atlantic Ocean). Geochemistry, Geophysics, Geosystems 18 (11): 3910-3928.
  • Wade B.S., Pearson P.N., Berggren W.A. & Pälike H. (2011). Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Science Reviews, 104 (1-3): 111-142.
  • Westerhold T., Röhl U., Pälike H., Wilkens R., Wilson P. A. & Acton G.D. (2014). Orbitally tuned time scale and astronomical forcing in the middle Eocene to early Oligocene. Climate of the Past, 10 (3): 955-973. doi:10.5194/cp-10-955-2014.