Small and isolated: ecology and fragmentation of Neanderthals
Marina Melchionna
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy; marina.melchionna@unina.it
How to cite: Melchionna (2018). Small and isolated: ecology and fragmentation of Neanderthals. Fossilia, Volume 2018: 53-56. https://doi.org/10.32774/FosRepPal.20.1810.075356
Bullet-Points Abstract
- Homo sapiens greater ecological plasticity allowed this species to react better to climate changes
- AMHs maintained a more continuous occupation of its potential habitat
- Habitat reduction and fragmentation in Homo neanderthalensis must have had dramatic consequences on its population size.
Keywords: Homo neanderthalensis; Species distribution modelling; fragmentation.
Fig. 1. Suitability analysis results. Response curves depict the variation of the probability of presence versus each variable. Blue (green) curves referring to H. neanderthalensis (H. sapiens). Dotted lines represent the range interval over the 100 SDMs run per species in order to account for dating uncertainty.
Fig. 2. Evolution of optimal habitats in Neanderthals and AMHs. Dots represent the linear distance in kilometers between optimal patches pairs (i.e. above the 95th percentile of the suitability values predicted by the ensemble forecasting). Distance increases from white to purple and is proportional to dots size. Row and column numbers refer to the individual patch ID. Blue (green) columns in bar plots summarize the percentage of optimal patches pairs >4000 km apart for H. neanderthalensis (H. sapiens) in the three time points. Dark grey (light grey) bars indicate range size of H. neanderthalensis (H. sapiens) in millions square kilometres.
Cited References
- Banks W. E., d’Errico F., Peterson A. T., Kageyama M., Sima A. & Sánchez-Goñi M. F. (2008). Neanderthal extinction by competitive exclusion. PLoS One, 3: e3972.
- Benazzi S., Slon V., Talamo S., Negrino F., Peresani M., Bailey S. E., Sawyer S., Panetta D., Vicino D., Starnini E., Mannino M. A., Salvadori P.A., Meyer M., Pääbo S. & Hublin J.-J. (2015). The makers of the Protoaurignacian and implications for Neandertal extinction. Science, aaa2773.
- Benito B. M., Svenning J.C., Kellberg-Nielsen T., Riede F., Gil-Romera G., Mailund T., Kjaergaard P.C., & Sandel B.S. (2017). The ecological niche and distribution of Neanderthals during the Last Interglacial. Journal of Biogeography. 44: 51–61.
- Bocquet-Appel J. P. & Degioanni A. (2013). Neanderthal demographic estimates. Current Anthropology, 54(S8): S202-S213.
- Bradtmöller M., Pastoors A., Weninger B., Weniger G.-C. (2012). The repeated replacement model – rapid climate change and population dynamics in Late Pleistocene Europe. Quaternary International 247: 38–49.
- d’Errico F. & Goñi M. F. S. (2003). Neandertal extinction and the millennial scale climatic variability of OIS 3. Quaternary Science Reviews, 22(8-9): 769-788.
- Finlayson C., Giles-Pacheco F. (2000). The southern Iberian Peninsula in the late Pleistocene: geography, ecology, and human occupation. In Stringer, C. B., Barton, R. N. E., Finlayson, J. C. (eds.), Neanderthals on the Edge. Oxbow Books, Oxford, pp. 139–159.
- Franciscus R. G. & Churchill S. E. (2002). The costal skeleton of Shanidar 3 and a reappraisal of Neandertal thoracic morphology. Journal of human evolution, 42(3): 303-356.
- Gajewski K., Muñoz S., Peros M., Viau A., Morlan R., Betts M. (2011). The Canadian archaeological radiocarbon data-base (CARD): archaeological 14C dates in North America and their paleoenvironmental context. Radiocarbon, 53: 371–394.
- Grun R., Stringer C. B. & Schwarcz H. P. (1991). ESR dating of teeth from Garrod’s Tabun cave collection. Journal of Human Evolution, 20(3): 231-248.
- Helmuth H. (1998). Body height, body mass and surface area of the Neandertals. Zeitschrift für Morphologie und Anthropologie, 1-12.
- Higham T., Douka K., Wood R., Ramsey C.B., Brock F., Basell L., Camps M., Arrizabalaga A., Baena J., Barroso-Ruíz C., Bergman C., Boitard C., Boscato P., Caparrós M., Conard N.J., Draily C., Froment A., Galván B., Gambassini P., Garcia-Moreno A., Grimaldi S., Haesaerts P., Holt B., Iriarte-Chiapusso M.-J., Jelinek A., Pardo J.F.J., Maíllo-Fernández J.-M., Marom A., Maroto J., Menéndez M., Metz L., Morin E., Moroni A., Negrino F., Panagopoulou E., Pe-resani M., Pirson S., la Rasilla de M., Riel-Salvatore J., Ronchitelli A., Santamaria D., Semal P., Slimak L., Soler J., Sol-er N., Villaluenga A., Pinhasi R. & Jacobi R. (2014). The timing and spatiotemporal patterning of Neanderthal disappear-ance. Nature, 512: 306–309. doi:10.1038/nature13621
- Hortolà P. & Martínez-Navarro B. (2013). The Quaternary megafaunal extinction and the fate of Neanderthals: An integra-tive working hypothesis. Quaternary International. 295, 69–72. doi:10.1016/j.quaint.2012.02.037
- Hublin J.-J. & Roebroeks W. (2009). Ebb and flow or regional extinctions? On the character of Neandertal occupation of northern environments. Comptes Rendus Palevol, 8: 503–509.
- Lari M., Di Vincenzo F., Borsato A., Ghirotto S., Micheli M., Balsamo C., Collina C., De Bellis G., Frisia S., Giacobini g., Gigli E., Hellstrom J.C., Lannino A., Modi A., Pietrelli A., Pilli E., Profico A., Ramirez O., Rizzi E., Vai S., Venturo D., Piperno M., Lalueza-Foz C., Barbujani G., Caramelli D. & Gigli, E. (2015). The Neanderthal in the karst: first dating, morphometric, and paleogenetic data on the fossil skeleton from Altamura (Italy). Journal of human evolution, 82: 88-94.
- Linnaeus C. (1758) - Systema Naturae per regna tria naturae, secundum Classes, Ordines, Genera, Species, cum characteribus, differentiis, synonymis, locis. Tomus I, 10th edition: Holmiae, Laurentius Salvius, Stockholm, Sweden, 824 p.
- Maiorano L., Cheddadi R., Zimmermann N. E., Pellissier L., Petitpierre B., Pottier J., Laborde H., Hurdu B. I., Pearman P. B., Psomas A., Singarayer J. S., Broennimann O., Vittoz P., Dubuis A., Edwards M. E., Binney H. A. & Guisan A. (2013). Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecology and Biogeography. 22: 302–317.
- McGarigal K., Cushman S. A. & Ene E. (2012). FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. In Computer Software Program Produced By the Authors at the University of Massachusetts, Amherst.
- Melchionna M., Di Febbraro M., Carotenuto F., Rook L., Mondanaro A., Castiglione S., Diniz-Filho J.A.F. & Raia P. (2018). Fragmentation of Neanderthals’ pre-extinction distribution by climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 496: 146-154.
- Mellars P. & French J. C. (2011). Tenfold population increase in western europe at the neandertal–to–modern human transition. Science, 333(6042): 623-627.
- Parnell A. (2016). Bchron: radiocarbon dating, age-depth modelling, relative sea level rate estimation, and non-parametric phase modelling. In R package Version 4.1.1 (2015).
- Rey-Rodríguez I., López-García J. M., Bennàsar M., Bañuls-Cardona S., Blain H. A., Blanco-Lapaz Á., Rodríguez-Álvarez X. P., de Lombera-Hermida A., Díaz-Rodríguez M., Ameijenda-Iglesias A., Agustí J., Fábregas-Valcarce R. (2016). Last Neanderthals and first Anatomically Modern Humans in the NW Iberian Peninsula: Climatic and environmen-tal conditions inferred from the Cova Eirós small-vertebrate assemblage during MIS 3. Quaternary Science Review, 151: 185–197.
- Sepulchre P., Ramstein G., Kageyama M., Vanhaeren M., Krinner G., Sánchez-Goñi M.-F. & D’errico F. (2007). H4 abrupt event and late Neanderthal presence in Iberia. Earth and Planetary Science Letters, 258: 283–292.
- Singarayer J. S., Valdes P. J. (2010). High-latitude climate sensitivity to ice-sheet forcing over the last 120kyr. Quaternary Science Review, 29: 43–55. doi:10.1016/j.quascirev.2009.10.011
- Sørensen B. (2011). Demography and the extinction of European Neanderthals. Journal of Anthropological Archaeology, 30(1): 17-29.
- Stewart J. R. (2004). Neanderthal–modern human competition? A comparison between the mammals associated with Mid-dle and Upper Palaeolithic industries in Europe during OIS 3. International Journal of Osteoarchaeol. 14: 178–189. doi: 10.1002/oa.754
- Stewart J. R. (2007). Neanderthal extinction as part of the faunal change in Europe during Oxygen Isotope Stage 3. Acta Zoologica Cracoviensia - Series A: Vertebrata, 50A: 93–124. doi:10.3409/000000007783995372
- Trinkaus E. (1995). Neanderthal mortality patterns. Journal of Archaeological Science, 22(1): 121-142.
- van Andel T. H. (2002). The Climate and Landscape of the Middle Part of the Weichselian Glaciation in Europe: The Stage 3 Project. Quaternary Research, 57: 2–8. doi:10.1006/qres.2001.2294
- Van Meerbeeck C. J., Renssen H., Roche D. M. (2009). How did Marine Isotope Stage 3 and Last Glacial Maximum cli-mates differ?–perspectives from equilibrium simulations. Climate of Past, 5: 33–51.
- Vermeersch P. M. (2017). Radiocarbon Palaeolithic Europe Database, Version 24. Available at: http://ees.kuleuven.be/geography/projects/14c-palaeolithic/index.html.