Alessandro Mondanaro
Dipartimento di Scienze della Terra, Università degli Studi di Firenze 50121, Italy
; alessandro.mondanaro@unifi.it
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico
II, Italy
https://orcid.org/0000-0003-0325-7066
How to cite: Mondanaro (2018). Mechanisms of competition in mammals during the Late Neogene. Fossilia, Volume 2018: 57-60. https://doi.org/10.32774/FosRepPal.20.1810.085760
Bullet-Points Abstract
- Although rare, megaherbivores negatively affect species diversity at several trophic levels.
- In contrast, it has been suggested that they favour coexistence among top predators.
- We show megaherbivores controlled ecosystem functioning in Neogene large mammals.
- Carnivores were a factor in controlling the diversity of small prey.
Keywords: Predation to prey ratio; Megaherbivores; Apparent competition.
Fig. 1. The geographical distribution of fossil localities included in the analyses (left). Geographical coordinates were rotated to the present for plotting purposes. To the right, for each species it is plotted the minimum convex polygon including all species occurrences (right)
Cited References
- Carotenuto F., Barbera C. & Raia P. (2010). Occupancy, range size, and phylogeny in Eurasian Pliocene to recent large mammals. Paleobiology, 36, 399–414.
- DeSantis L. R. G., Schubert B. W., Scott J. R. & Ungar P. S. (2012). Implications of diet for the extinction of saber-toothed cats and American lions. PLoS ONE, 7: e52453. http://dx. doi.org/10.1371/journal.pone.0052453
- du Toit J. T. & Owen-Smith N. (1989). Body size, population metabolism, and habitat specialization among large African herbivores. American Naturalist, 133 (5), 736–740. http://dx. doi.org/10.2307/2462079.
- Feranec R. S. (2005). Growth rate and duration of growth in the adult canine of Smilodon gracilis, and inferences on diet through stable isotope analysis. Bulletin of the Florida Museum of Natural History, 45, 369–377.
- Fritz H., Duncan P., Gordon I. & Illius A. (2002). Megaherbivores influence trophic guilds structure in African ungulate communities. Oecologia, 131, 620–625. http:// dx.doi.org/10.1007/s00442-002-0919-3.
- Fritz H., Loreau M., Chamaillé Jammes S., Valeix M. & Clobert J. (2011). A food web perspective on large herbivore community limitation. Ecography, 34, 196–202.
- Malhi Y., Doughty C. E., Galetti M., Smith F.A., Svenning J.-C. & Terborgh J. W. (2016). Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proceedings of the National Academy of Sciences, 113: 838–846. http://dx.doi.org/10.1073/pnas.1502540113.
- McMurry T. L. & Politis D. N. (2015). High-dimensional autocovariance matrices and optimal linear prediction. Electronic Journal of Statistics, 9: 753–788.
- Radloff F. G. T., du Toit J. T. & Johan T. (2004). Large predators and their prey in a southern African savanna: a predator’s size determines its prey size range. Journal of Animal Ecology, 73: 410–423.
- Raia P., Meloro C. & Barbera C. (2007). Inconstancy in predator/prey ratios in Quaternary large mammal communities of Italy, with an appraisal of mechanisms. Quaternary Research, 67: 255–263. http://dx.doi.org/10.1016/j.yqres.2006.10.005.
- Randau M., Carbone C. & Turvey S. T. (2013). Canine evolution in sabretoothed carnivores: natural selection or sexual selection? PLoS ONE, 8, e72868.
- Terborgh J., Holt R. D. & Estes J. A. (2010). Trophic cascades: what they are, how they work, and why they matter. In Terborgh, J., Estes, J.A. (Eds.), Trophic Cascades: Predators, Prey and the Changing Dynamics of Nature. Island Press, USA, pp. 1–18.
- Van Valkenburgh B., Hayward M. W., Ripple W. J., Meloro C. & Roth V. L. (2016). The impact of large terrestrial carnivores on Pleistocene ecosystems. Proceedings of the National Academy of Sciences, 113 (4): 862–867. http://dx.doi.org/10.1073/pnas.1502554112.